

75W LEDcode2 LED Driver with Smooth Dimming to 1\%

ECOdrive

Programmable digital ECOdrive LED driver providing standard LED fixtures with the smoothest flicker-free dimming to 1% light output, delivering value to any application. The LED driver works seamlessly together with LED modules, controls and intelligent luminaire elements.

Product offering

ECOdrive 75L-M1Z0Z

Part number (P/N)	EC75L-M1Z0Z1
Product description	ECOdrive, 75 W, LEDcode2, 1 control channel, constant current, $1 \times 55 \mathrm{~V}$ output,
	Side feed, Long metal

Features \& benefits

Natural dimming	Dim to 1\%, smooth brightness changes, excellent flicker performance, adaptable dimming curves, configurable minimum dimming level
Symbiosis	Seamless interoperability with LED modules, controls and in-luminaire intelligent devices
LEDcode	LEDcode2 connects to integrated digital accessories, supports location-based loT applications and enables wired and wireless lighting control through LEDcode peripheral devices
Programmable	Fine-tune your driver for any application
Performance	Low inrush current and total harmonic distortion (THD), high power factor and efficiency
Camera compatibility	Hybrid HydraDrive technology is proven to work in TV studios and security camera environments

Programming tools

Programming interface	TOOLbox pro (TLU20504)
Programming cable set	TOOLbox pro to LED driver, programming cable, 5pcs (TLC03051)
Programming Hand-held, Touch-and-Go	PJ0035HH1
Programming jig	PJ0750L1
Programming software	FluxTool

Warranty

Warranty period
General Terms and Conditions

Order number configurator

P/N	LED driver part number.
LED output current	Enter value in 1 mA increments, e.g. " 811 " for 811 mA

Nominal input voltage range AC	120-277V (UL)
Absolute input voltage range AC	108-305V
Maximum input current	0.8A@ 120V / 60Hz
	0.4A @ 230V / 50Hz
	0.35 A @ 277V / 60Hz
Input frequency range	$50-60 \mathrm{~Hz}$
Efficiency at full load	85\%
Power factor at full load	> 0.95
THD at full load	<15\%
Maximum inrush current	<200mA² @ 120V / 60Hz
	<200mA²s @ 230V / 50Hz
	<200mA² @ 277V / 60Hz
Surge protection	2 kV differential mode (DM)
	2 kV common mode (CM)
Maximum standby power	0.5W

Output characteristics

Maximum LED output power	75 W
Number of LED outputs	1
Programmable LED output current range	$700-2,100 \mathrm{~mA}$
LED output type	Programmable in 1 mA increments within specified current range
LED output current tolerance	$+/-5 \%$ at programmed LED output current
LED output voltage range	$2-55 \mathrm{~V}$

Operating window

Output voltage (V)

Control characteristics

Performance

Typical efficiency vs load
Tested with a load of 11 LEDs in series, programmed for $2,100 \mathrm{~mA}$ and at $25^{\circ} \mathrm{C}$ ambient temperature. The measurements below 75 W were performed by dimming the light output.

Typical power factor vs load
Tested with a load of 11 LEDs in series, programmed for $2,100 \mathrm{~mA}$ and at $25^{\circ} \mathrm{C}$ ambient temperature. The measurements below 75 W were performed by dimming the light output.

Typical THD vs load

Tested with a load of 11 LEDs in series, programmed for $2,100 \mathrm{~mA}$ and at $25^{\circ} \mathrm{C}$ ambient temperature. The measurements below 75 W were performed by dimming the light output.

Typical flicker performance

Typical flicker percent as a function of frequency, measured across the dimming range. The results are overlaid with the low-risk (yellow) and no observable effect (green) levels as defined in IEEE P1789.

Environmental conditions

Operating ambient temperature (Ta) range	$-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Maximum operating case temperature (Tc max)	$87^{\circ} \mathrm{C}$
Acoustic noise - steady state	$<24 \mathrm{dBA}$ (Class A)
Lifetime	50,000 hours at a maximum case temperature (Tc) of $84^{\circ} \mathrm{C}$
TC point location	

LED driver protection

Thermal	The LED output current is decreased whenever the internal LED driver temperature exceeds factory preset temperature. The LED output current is increased again once the internal LED driver temperature drops below this internal temperature threshold. If the internal LED driver temperature continues to increase, despite a decrease in output current, the LED driver will shut down.
LED output short circuit	The LED output current is cut off whenever the LED driver detects a short- circuit. The LED driver will attempt a restart every 400ms after a short-circuit is detected.
LED output overload	The LED driver decreases the LED output current sequentially, until it reaches its maximum rated power, whenever a load that exceeds the LED driver's maximum rated power is connected to the LED output.
Reverse polarity	The LED driver will not yield any current if the polarity of the load on the LED output is reversed. This situation will not damage the LED driver but may damage the LED load.

LED protection

Thermal protection LED
An external NTC thermistor, which is placed on a PCB near the LEDs, can be connected to the driver via the LEDcode/NTC terminals. The output current to the LEDs is then decreased by 75% whenever the NTC exceeds a maximum allowable temperature, which is specified by the user in the FluxTool software. The default NTC temperature limit is set to $70^{\circ} \mathrm{C}$.

Thermistor value	$47 \mathrm{k} \Omega$
Suitable thermistors	leaded: Vishay, P/N 238164063473 screw: Vishay, P/N NTCASCWE3473J

LED driver mechanical details

	$\begin{aligned} & \mathrm{L} 1 \\ & \mathrm{~L} 2 \end{aligned}$	
Length (L)	typical: $424.0 \mathrm{~mm} / 16.69$ in maximum: $424.5 \mathrm{~mm} / 16.71$ in	
Width (W)	typical: $30.2 \mathrm{~mm} / 1.19$ in maximum: $30.7 \mathrm{~mm} / 1.21$ in	
Height (H)	typical: $26.8 \mathrm{~mm} / 1.06$ in maximum: $27.8 \mathrm{~mm} / 1.09 \mathrm{in}$	
Mounting hole diameter (d1)	$5 \mathrm{~mm} / 0.2$ in tolerance: $0.5 \mathrm{~mm} / 0.02$ inch	
Mounting hole diameter (d2)	$7.6 \text { mm / } 0.3 \text { in }$ tolerance: $0.5 \mathrm{~mm} / 0.02$ inch	
Center to center mounting hole distance (L1)	$407.5 \mathrm{~mm} / 16.04 \mathrm{in}$ tolerance: $0.5 \mathrm{~mm} / 0.02$ inch	
Center to center mounting hole distance (L2)	$415.0 \mathrm{~mm} / 16.34 \mathrm{in}$ tolerance: $0.5 \mathrm{~mm} / 0.02$ inch	
3D files available on product web page	IGS STEP	
Weight	385 g	
Mounting torque	Not to exceed 0.5 Nm	
Packaging		
Length x Width x Height	$457 \times 381 \times 178 \mathrm{~mm} / 18 \times 15 \times 7$ in	
Weight (including products)	21.3 kg	
Products per box	50 pcs	

Connector layout

Input wiring specifications

Connector type	push-in terminals
Connector supplier and series	Wago 250 series
Wire type	solid copper
Wire core cross section	$0.5-1.5 \mathrm{~mm}^{2}$ AWG $20-16$
Wire strip length	9.0 mm

Output wiring specifications

Connector type	push-in terminals
Connector supplier and series	Wago 250 series
Wire type	solid copper
Wire core cross section	$0.5-1.5 \mathrm{~mm}^{2}$ AWG $20-16$
Wire strip length	9.0 mm
Maximum remote mounting distance of LED load	AWG $20\left(0.52 \mathrm{~mm}^{2}\right)-14 \mathrm{~m} / 46 \mathrm{ft}$
	AWG $19\left(0.65 \mathrm{~mm}^{2}\right)-18 \mathrm{~m} / 59 \mathrm{ft}$
	AWG $18\left(0.82 \mathrm{~mm}^{2}\right)-22 \mathrm{~m} / 72 \mathrm{ft}$
	AWG $17\left(1.04 \mathrm{~mm}^{2}\right)-28 \mathrm{~m} / 92 \mathrm{ft}$
	AWG $16\left(1.31 \mathrm{~mm}^{2}\right)-36 \mathrm{~m} / 118 \mathrm{ft}$

Standards and compliance

UL Listed, Class P	UL 1310
	UL 8750
Conducted emissions	FCC title 47 part 15 class B
Radiated emissions	FCC title 47 part 15 class B
Electrostatic discharge	EN 61000-4-2
Electrical fast transient	EN 61000-4-4
Surge protection	IEC 61000-4-5 level 3: 2kV DM, 2kV CM @ 2 Ohm - ANSI 62.41 1991 category
Restriction of hazardous substances	RoHS2
SVHC-list substances	REACH Art.33

Certifications

Safety

Risk of electrical shock. May result in serious injury or death. Disconnect power
before servicing or installing.

Europe, Rest of World	North America
eldoLED B.V.	eldoLED America
Science Park Eindhoven 5125	One Lithonia Way
5692 ED Son	Conyers, GA 30012
The Netherlands	USA
E: info@eldoled.com	E: info@eldoled.com
W: www.eldoled.com	W: www.eldoled.com

